A NOVEL ALDEHYDE SYNTHESIS BASED ON ANHYDRO-BASES OF THE s-TRIAZOLE SERIES Gábor Doleschall

Research Group for Alkaloid Chemistry of the Hungarian Academy of Sciences
1111 Budapest, Gellért tér 4, Hungary

(Received in UK 14 January 1975; accepted for publication 22 January 1975)

Stable anhydro-bases of the <u>s</u>-triazole series have been known since some time. 1,2 Based on the ability of the anhydro-bases 2 /which are easily accessible from the <u>s</u>-triazolium salts $\frac{1}{2}$ to undergo ready <u>C</u>-alkylation, a novel method of synthesis of aldehydes $\frac{1}{2}$ starting with carboxylic acids or acid chlorides and alkyl halides has been devised. The results are summarized in Table 1.

The anhydro-bases 2 were obtained by allowing to react the triazolium lodides $\frac{1}{2}^3$ with NaH in DMF at O°C and then at r.t. $2/R^1 = R^2 = Ph/$ is an isolable stable compound /71 %, based on diphenylacetic acid; m.p. 204 °C/. The other anhydro-bases were not isolated. After the excess NaH had been

filtered off, alkyl halides were added to their DMF solutions; the alkylations took place under evolution of heat and, after additions of aqueous KI, the compounds $\underline{3}$ separated. The latter were in general reduced without purification with aqueous NaBH₄, and the resulting compounds $\underline{4}$ were cleaved with acid to yield the aldehydes $\underline{5}$ as described earlier. The anhydro-base, obtained from $\underline{1}$ /R¹ = Cl-C₂H₄, R² = H; m.p. > 320 °C, d; yield: 65 %/ suffers intramolecular C-alkylation in the course of its preparation to furnish cyclopropanecarbaldehyde as the final product.

The products were identified by comparison with authentic samples and the new intermediates of types 2 and 4 were characterized by microanalyses, IR and NAR spectra. The present procedure is a useful simple alternative to the method of Meyers. 4

Mah	1e	٦
Tur	/4.0	-

		. –			<u>3</u>		<u>4</u>		<u>5</u>
Rl	R ²	x	R ³	Юg	m.p.	yıeld ^a	m.p.	yıeld ^a	yıeld ^{a,b}
Н	H	Cl	Ме	I	218-20	60	90-91	53	47
H	H	Cl	Et	I	238-40	54	65-66	_	31
H	H	Cl	MeOOCCH2	Cl	232-34	55	-	-	29 ^{c}
Me	Н	OH	Me	I	243-45	40	_	-	34
Me	Me	OH	Me	I	268-70	43	82 - 83	34	32
C1-C2H4	H	Cl	-	-	252 - 54 ^d	49	80-81	48 ^e	30

- a/ The yields are throughout based on the amount of the compounds $\mathbb{R}^1\mathbb{R}^2\text{CH-COX}$ introduced.
- b/ Isolated free aldehyde. c/ 2,4-Dinitrophenylhydrazone
- d/5-Cyclopropyl-3-methylthio-1,4-diphenyl-g-triazolium iodide
- e/5-Gyclopropyl-3-methylthio-1,4-diphenyl- \triangle 3-g-triazoline

References

- 1/ R. Grashey and M. Baumann, Angew. Chem. Internatl. Edn. 8, 133 /1969/
- 2/ G. V. Boyd and A. J. H. Summers, J. Chem. Soc. B 1971, 1648
- 3/ G. Doleschall, Tetrahedron Letters 1974, 2649
- 4/ A. I. Meyers et al., J. Org. Chem. 38, 36 /1973/, and earlier references